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Abstract

Optimum trajectories for the Applications
Technology Satellite (ATS)-E mission are obtalned.
Analysis, procedure, and results are presented.

The trajectories are numerically integrated from
launch to insertion into the final orbit. As a
result of a much smaller than optimum apogee motor,
these trajectories, unlike conventional synchro-
nous orbit trajectories, require non-circular park-
ing orbits and large amounts of inclination reduc-
tion before the solid motor burn at apogee. Con-
straints on parking orbit perigee radius and dura-
tion are included. Figures are presented describ-
ing the results.

Introduction

The Applications Technology Satellite (ATS)-E
mission 1s a circular synchronous equatorial orbit
mission. The ATS program has the objective of
advancing technology in areas which may have appli=
cation to future spacecraft. The experiments which
are conducted are spacecraft, communication, and
gcience oriented.

The spacecraft-oriented experiments on the
ATS-E provide information on power supply and com-
trol systems, a gravity-gradient stabilization
system, resistojet and ion micropound thrusters,
and synchronous environment. The scientific-
oriented experiments gather data on the particle
(electron and proton) distribution and flux and
the character of the electric and megnetic fields
at synchronous altitude.

The launch vehicle for the ATS-E mission was
an Atlas-Centaur and the solid apogee motor was a
part of the spacecraft system. The apogee motor
total impulse was sized for the early ATS missions
on the Atlas-Agena launch vehicle, which has less
payload capability than the Atlas-Centaur. The
apogee motor, slthough smaller than optlimum for
the larger vehicle, remained unchanged.

For an optimally sized apogee motor, a con-
ventional trajectory to circular synchronous
equatorial orbit is near optimum. A conventional
trajectory consists of five consecutive phases
as shown in Fig. 1. The first phase 1s an ascent
from the launch site to & circular parking orbit.
To maximize the mass in orbit, a 90° launch azi-
muth is used, which results in & parking orbit
inclination equal to the launch site latitude.
This inclination must be removed during the tra-
jectory. The second phase is a coast arc to the
proximity of the equator. A small portion of the
required plane change 1s removed by the second
burn, the third phase. Much more importantly, the
second burn must place the vehlcle in a transfer
orbit whose apogee 1s over the equator and equal
to synchronous altitude. The vehicle coasts to

apogee in the fourth phase. The fifth phase con-
sists of a final burn that removes the major por-

ticn of the inclination and circularizes the orbit.

Intuitively, i1t seems reasonable that this conven-
tional profile is near optimum if the burn and
coast durations may be varied to maximize the mass
at the end of each burn. However, if the total
impulse of the final burn is fixed at less than
the optimum value, the conventional trajectory
must be modified to yileld maximum payload to the
final orbit. In particular, the parking orbit is
nonecircular, the perigee radius of the transfer
orbit increases, and the second burn removes more
than a minor part of the inclination. The optimi-
zation problem is to find the best combination of
these changes and other less important ones to
yield maximum payload to circular synchronous equa--
torial orbit.

Optimization of the conventional trajectory to
circular synchronous equatorial orbit has been
treated by several authors. Hoelker and Silber(l)
present a detai}g? analysis of the conventional
problem. Rider considers the problem of chang-
ing the plane and also the radius of a circular
orbit. These and other similar studies treat the
problem as one of changing the plane and radius of
a circular orbit, ignoring the ascent to the first
(parking) circular orbit. This is satisfactory
for the conventional case. However, an unconven-
tional trajectory is more complex since the parking
orbit is in general noncircular. The ascent must
be included as part of the optimization problem.
Therefore, a more sophisticated optimization pro-
cedure is required for unconventional trajectories.
Additionally, the references mentioned sbove are
general and consequently are not concerned with
constraints which may alter the acceptability of a
given trajectory, such as limitations on coast time
or the minimum perigee radius of the noncircular
parking orbit. .

The problem of optimizing trajectories to
circular synchronous equatorial orbit may be con-
sidered as a multistage launch vehicle optimization.
Several analyses have been performed to optimize
multistage launch vehi?%is, including one by the
authors of this report . For optimizing the un-
conventional trajectory, the enalysis in Ref. 3
was expanded to three dimensions and also, to in-
clude a constraint on the parking orbit perigee
radius. The perigee radius constraint must be
included to limit aerodynamic heating on the space-
craft.

The Applications Technology Satellite (ATS)-E
missicn on the Atlas-Centaur vehlcle requires an
unconventional trajectory to achieve maximum pay-
load. The final burn is performed by a solid
motor which is part of the spacecraft system. That
motor is significantly smaller than optimum.

There are spacecraft and launch vehicle constraints
on the trajectory which must be incorporated into
the solution. The perigee radius and the parking
orbit coast duration are limited. The results for
this mission are presented.
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Problem Description

A conventional trajectory to cirecular syn-
chronous equatorial orbit launched from the Eastern
Test Range consists of five phases. They are:

1. Ascent to parking orbit.

2. Parking orbit coast.

3. Second impulse.

4. Transfer orbilt coast.

5. Third impulse or apogee burn.

Figure 1 shows the planar characteristics of
the conventional trajectory. The nonplanar charac-
teristics are shown in Fig. 2. The vehicle 1s
launched at an 8zimuth of 90° in order to maximize
the vehicle mass in parking orbit and to minimize
the inclingtion of the parking orbit. The circular
parking orbit altitude is as low as aserodynamic
heating constraints will allow, usually about 165
to 185 kilometers. The parking orbit coast time
ig usually about fifteen minutes - the time re-
quired to coast from orbit insertion to the first
equator crossing. The third phase places the
vehicle in a transfer orbit whose apogee and peri-
gee are over the equator. The apogee altitude is
about equal to the required altitude for a cilrcular
gynchronous orbit. The transfer orbit coast time
is about five and one-half hours. The third im-
pulse, the apogee burn, occurs at apogee of the
transfer orbit. Apogee 1s designed to occur at the
equator and at the proper altitude for injection
into the final orbit. A small part of the inclina-
tion is removed by the second impulse with the re-
mainder being removed by the apogee burn. In this
conventional method, the final conditions at the
end of each burn are known and the mass can easily
be maximized progressively phase by phase if the
gecond and third impulse slizes are unspecified.

Now suppose that the total impulse of the
third burn is fixed. Then the transfer orbit must
be constructed such that the AV avallable from the
third impulse 1s exsctly that required to place
the vehicle In circular synchronous equatorial
orbit. If the AV available from a fixed third
total impulse 1s less than that required to cir-
cularize and equatorialize the orbit for the mass
available from a conventional ascent and second
impulse, then the trajectory to transfer orbit
insertion must be altered to reduce the AV required
of the third ilmpulse. This can be done by reducing
the required plane change and the AV required for
circularization. For reasons described at length
in the Results and Discussion section, the uncon-
ventional trajectory needed to reduce the AV re-
quired of the apogee motor varies in many respects
from the conventional profile. The most dramatic
changes are a noncircular parking orbit, nontrivial
inclination reduction by the second impulse, and a
significantly nonequatorial latitude for the second
impulse. As 1s desired, the changes result in
lowering the AV required of the fixed apogee motor.
However, in this unconventional profile, the final
conditions required at the end of the ascent and
second impulse are unknown. They might be deter-
mined by varying those final conditions parametri-
cally wuntil the optimum is obtained. However,
because of the number of veriables, this process
is clumsy and time consuming.

Calculus of Variations Solution

A Calculus of Variations formulation was used
to maximize the payload to circular synchronous
equatorial orbit without resorting to a parametric
search. The optimization of the atmospheric por-
tion of the trajectory is omitted from the varia-
tional analysis since the steering is constrained
by factors other than optimizing performance, such
as aerodynamic loading and heating limitations.
The analysis considers the problem from the point
in the trajectory that the atmosphere can be ne-
glected to insertion into the final orbit. 1Im
addition to optimizing the steering, the durations
of any unspecified burns and coasts are optimized
while malntaining the specified perigee radius of
the parking orbit. The analysis is presented in
appendix B. It is derived in three dimensional
rectangular coordinates In a manner similar to
Ref. 4. The equations for optimum burn and coast
duration are obtained from an analysis similar to
that used by the authors in Ref. 3. It is neceg-
sary to extend the analysis to include an inter-
mediate boundery condition which specifies the
perigee radius of the parking orbit at the end of
the ascent. Additionally, the oblate earth model
must be added to the variational analysis. The
effect of oblateness 1s not negligible in trajec-
tories to circular synchronous equatorial orbit.
Trajectorlies to that orbit are long, minimally
around six hours. Oblateness is the major perturb-
ing force during most of a trajectory. Because of
the large change in inclination required to perform
the mission, any perturbation in the ineclination,
thus increasing or decreasing the amount of plane
change required of the propulsion systems, affects
the final mass and should be considered in the
analysis.

The trajectories are numerically integrated
to incorporate a nonimpulsive vehicle model and to
include the effects of oblateness and small thrusts
over long periods of time which camnnot be conven-
lently treated impulsively.

~ The analysis presented in appendix B requires
the solution of a two point boundary value problem.
The solution to the two point boundary value prob-
lem for the cireular synchronous orbit problem with
a fixed apogee burn and parking crbit coast time re-
quires satisfaction of a minimum of eight final con-
ditions with an equal number of initial conditions.
The number and specific initial and final conditions
are explained in appendix B.

Procedure

A simple Newton Raphson iteration scheme was
used to solve the two point boundary value problem.
This scheme was used successfully with as many as
twelve iteration variables. For further explans-
tion of the iteration scheme, see Ref. 5.

The pertial derivatives required for the iter-
ation scheme were obtained by integrating the ad-
Joint equations. These were obtained as in Ref. 4.
Solutions were initially obtalned by using a spher-
ical earth model for the adjoint equations, but it
was found that including the oblateness terms im-
proved the convergence properties of the problems.
In some problems of this type, it was found that
including the oblateness terms was necessary to
obtain convergence.



It was difficult to obtain solutions to these
problems because of the high degree of nonlinearilty
of many of the derivatives as well as the diffi-
culty of guessing at the initial velues of the
thrust angle in pitch and yaw and thelr rates.
technique was devised to systematically proceed
from a simple, easily converged problem to the
final solution. This technique is described at
length in appendix C. Other techniques, such as
gradient methods, might avoid some of the diffi-
culties associated with the Newton Raphson techni-
que. However, the method described in the appendix
1s convenient, straightforward, and adequate.

After obtalning one solution, proceeding to others
in the region of interest is not difficult.

A

Results and Discussion

I. Launch Vehicle

The spacecraft is launched by an Atlas-
Centaur, a two-and-a-half stage vehicle. The Atlas
is propelled by two booster engines and one sus-
tainer engine. The booster engines are Jettisoned
at a predetermined acceleration level. The sus-
tainer engine continues to burn (sustainer solo).
The Centaur insulation panels and then the payload
fairing are Jettisoned 1n this phase. The sus-
tainer solo ends at propellant depletion and the
Atlas stage is Jettisoned. After about ten seconds,
the Centaur emgines, burning hydrogen and oxygen,
ignite and burn until the desired parking orbit is
reached. During the parking orbit, a hydrogen
peroxide propulsion system is used to maintain a
very small acceleration for propellant retention
and for attitude comtrol. At the end of the park-
ing orbit, the Centaur engines burn again until
the proper transfer orbit is achieved. After en-
gine shutdown, the Centaur control system acquires
the proper orientation for the spacecraft burn,
the Centaur and the spacecraft separate, and the
spacecraft is spun up for stability. The space-
craft coasts up to the proper altitude maintaining
the separation attitude. The spacecraft motor
burns to place the spacecraft in the final orbit.
The spacecraft apogee motor has thrust of 22 240
newtons and an effective specific impulse of
279.1 seconds. The total impulse available from
the motor is 950 900 newton-seconds, which corre-
sponds to a propellant load of 347 kilograms.

II. Trajectory Description

The trajectory starts with a short vertical
rise, followed by a rapid pitchover phase in the
desired azimuth direction. The amount of pltch-
over determines the amount of lofting during the
atmospheric portion of the trajectory. The re-
mainder of the atmospheric phase (which is assumed
to end at boocster stage jettison), is flown with a
near-zero angle of attack steering program (des-
cribed in Ref. 5), to minimize vehicle heating and
aerodynamic loads. The thrust direction 1s con-~
strained to be parallel to the launch azimuth
plane, which is established at launch.

Since the ATS-E spacecraft motor has a fixed
propellant load, the trajectory must be designed
such that the AV required at apogee of the transfer
orbit 1s exactly that required to place the space-
craft in the desired final orbit. As mentioned
earlier, the ATS-E motor is much smaller than opti-
mum. The Atlas-Centaur can put more mass in a con-
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ventional transfer orbit than the apogee motor can
place in circular synchronous equatorial orbit.
Therefore, an unconventional trajectory is required
to lower the AV required of the apogee burn.

An optimum unconventional trajectory was ob-
tained for the ATS-E mission to circular synchro-
nous equatorial orbit. The AV required of the
apogee motor 1s reduced by decreasing each of the
two components which together make up the total AV -
that needed to circularize the orbit and to reduce
the inclinastion to zero. The AV for circulariza-
tion is. reduced by increasing the horizontal velo-
city at apogee of the tramnsfer orbit without adding
radial velocity. Any radial velocity would have to
be removed by the apogee burn. Increesing the
horizontal velocity at a fixed apogee radius is
equivalent to raising the perigee radius of the
transfer orbit - thereby decreasing the ellipticity
of the transfer orbit.

The AV required at apogee for reducing the
inclination to zero is decreased by lowering the
inclination of the transfer orbit. However,
raising the velocity at apogee increases the AV
required for inclination removal at a fixed trans-
fer orbit inclination. Therefore, the combination
of the two methods represents a compromise which
is optimized as part of the total problem.

Tn order to cbtain the modified transfer orbit,
the trajectory to insertion into that orbit is
modified. Most of the inclination reduction is
performed by the second burn near the equator.

Only & small part of the inclination change to
transfer orbit insertion is accomplished in the
ascent to parking orbit.

The characteristics of the optimum parking
orbit are changed from the conventional profile to
increase the perigee radius of the transfer orbit.
An elliptical rather than circuler parking orbit
is used to raise the altitude of the second burm.
The perigee radius of the optimum parking orbit
remains limited by aerodynamic heating considera-
tion at some acceptable value. Since injection
into the parking orbit occurs near perigee, the
vehidéle must coast along the ellipse to a higher
radius. Due to limitation of the coast duration
for the ATS-E mission, the second burn was required
to occur near the first equator crossing. (From
tracking or other considerations, a second (or
greater) equator crossing could be chosen for the
second burn, which would increase the parking or-
bit comst time by & half period (or more)). The
latitude of the second burn is no longer equatorial
as in the conventional case since the optimum posi-
tion for raising the perigee radius and decreasing
the inclination is dependent on radius and velocity
as well as latitude. The parking orbit coast time
is greater for this unconventional profile since
the time to the equator is greater for an ellipti-
cal than for & circular parking orbit and addition-
ally, the second burn occurs significantly south
of the equator. Optimum true amomalies are found
for the beginning and end of the parking and trans-
fer orbit coasts. In addition, the optimum com-
bination of the changes Just described as charac-
terizing the unconventional profile is selected.

The desired finsl inclination for the ATIS-E
mission is not exactly zero. The perturbations of
the sun, moon, and oblateness of the earth cause



a spacecraft to drift from an exactly equatorial
orbit. Since zero inclination is not a stable
condition, a final orbit inclination yielding the
smallest averege inclination over the lifetime of
the spacecraft is desired. ©Small finael inclina-
tions with the proper inertial ascending node are
found to yield acceptable inclination over the
lifetime of the satellite. The particular combi-
nations of final orbit inclination and ascending
node are functions of the positions of the sun and
moon, which are in turn functions of launch time
and date. Therefore, data were obtained for pay-
load to circular synchronous orbits as a function
of final inclination. Negative inclinations are
included in the data. This convention Indicates
that the node has been switched approximately
180° by the apogee burn.

The Atlas-Centaur has s twenty-five minute
limitation on parking orblt coast time for the
minsion. Therefore, inclusion of that constraint
is necessary for realistic determination of vehicle
capability. However, optimizing the coast time
provides a more dramatic and obvious demonstration
of the optimization procedure. Launch azimuth was
not optimized along with the other trajectory
paremeters. The effect of launch azimuth was
investigated parametrically to determine its ef-
fect on separated spacecraft mass.

Figure 3 presents separated spacecraft mass
as a function of launch azimuth for final ineclina-
tions of (-)2° and 5.25° for both optimum and
twenty-five minute parking orbit coast times.
Separated spacecraft mass 1s the mass of the
spacecraft when it is separated from the Centaur
vehicle. This figure shows that the separated
spacecraft mass 1s rather Iinsensitive to launch
azimuth. Hence, for simplicity, launch azimuth
is fixed at 90° for the remaining figures.

Figure 4 shows the separated spacecraft mass
as a function of final inclination. The separated-
spacecraft mass decreases as final inclination
decreases. Figures 5 and 6 show the effect of
final inclination on the tramsfer orbit inclina-
tion and inertial velocity at apogee. As might
be expected, as the final inclination decreases,
s0 does the transfer orbit inclination.

As might not be expected, the veloclty at
apogee also decreases as final inclination de-
- creases. Figures 7 through 12 show why this
occurs. Figure 7 shows the latitude of the second
Centaur engine start as a function of final in-
clingtion. Since the second burn 1s required to
reémove more inclination as final inclination de-
creases, 1t is advantageous to mpve the burn
nearer the equator for more efficlent plane change.
Figure 8 shows that the longitude of second burn
start also decreases as final inclination de-
creases. These trends decrease the parking orbit
coast arc as final inclination decreases. This
is reflected in a decrease in the true anomaly at
second Centaur cut-off, as seen in Fig. 9. Fig-
ures 10, 11, and 12 also show additional effects
of moving the second burn nearer the equator. It
decreases the parking orbit coast time, the alti-
tude of the second burn, and the apogee altitude
of the parking orbit. These &ll occur as & result
of the decrease in parking orbit coast arc. These
figures show why the apogee velocity 1s decreasing
as finel inclination decreases. The perigee

radius of the transfer orbit decreases as the alti-
tude of the second burn decreases. The apogee al-
titude of the transfer orbit is almost constant at
synchronous altitude, hence as perigee decreases,
so does apogee velocity.

Figures 5 and 6 also indicate that more AV is
required of the apogee motor as final inclination
decreases. It can be seen that both the plane
change and circularization AV are increasing. How-
ever, Fig., 4 shows that the ignition mass of the
fixed solid motor is decreasing, which increases
the AV capabillty of the apogee motor.

Figure 13 shows the percentage of the Centaur
propellant used in the first burn. The figure
shows that as the final inclination increases, the
first burn duration increases as the apogee alti-
tude increases (Fig. 12).

The final longitude as a function of final
inclination is shown in Fig. 14. It shows that
longitude decreases as final inclination Increases.
The satellite remalns at the longitude indicated
only when the inclination is zero, the orbit cir-
cular, and the altitude synchronous. For other
inelinations, the position (latitude and longitude)
of the satellite subpoint describes a figure eight
on the surface of the rotating earth. The longi-
tudes indicated in Fig. 14 are injection longitudes,
not necessarily the longitude at which the equator
crossing occurs. For small inclinations, the lon-
gitude does not vary greatly during the period of
the orbit.

Now consider the limitation of parking orbit
coast time. Twenty-five minutes is less than
optimum for all the final inclinations considered,
as seen in Fig. 10. The differences in separated
spacecraft mass are shown in Fig. 4. As seen from
these figures, as the difference between the opti-
mum and limited coast times decreases, the loss 1in
payload due to coast time limitation decreases also

The coast time limitation reduces the advan-

. tage of raising the apogee of the parking orbit as

final inclination increases. The energy required
to raise apogee does not yield the payload in-
creases available with optimum coast time since
the altitude camnot be acquired as efficiently in
the shorter coast time. The energy is better
spent by the second burn to reduce the inclination
of the transfer orbit. This 1s reflected in sev-
eral of the figures. In Fig. 5, the transfer or-
bit inclination for the coast limited case lies
well below the optimum case. The lower second
burn altitude is reflected in the lower velocity
at apogee of the transfer orbit, as seen in Fig. 6.
Because the parking orbit characteristics do not
vary greatly with final inclination, the latitude
and longitude of the second burn and the true
snomaly at second Centaur cut-off are nearly con-
stant. These may be seen in Figs. 7, 8, and 9.
The conclusions which may be drawn for the per-
centage of Centaur propellant used 1n the first
burn and final longitude (Figs. 13 and 14), are
similar to those for the optimum coast case.

Summary of Conclusions

Analysis and results are presented for tra-
Jectories to circular synchronous equatorial orbit
where the apogee motor is fixed at & smaller than




optimum total impulse. The results for the small
apogee motor case were obtalned for the ATS-E
mission, which used the Atlas-Centaur lsunch ve-
hicle.

The results show some of the characteristics
of optimum trajectories for launch vehicle-apogee
motor combinatlions where the apogee motor is smal-
ler than optimum. More importent, the results
demonstrate that optimum trajectories to circular
synchronous equatorial orbits may be obtalned with
detailed and hence complicated vehicle models for
unconventional (small apogee motor) trajectory
profiles. These results may be obtalned without
resorting to exotic mathematical procedures for
solving the two point boundary value problem.
These results were obtained with a simple Newton-
Raphson iteration scheme. The partial derivatives
were obtalned by integrating the adjoint equations.
The simple iteration scheme with the integrated
partial derivatives 1s able to obtain solutions to
the highly nonlinear two point boundary value
problem even when the number of initial and final
conditions reaches twelve.

Appendix A

Symbols

C first integral of Euler-Lagrange equa-
tions, kg/sec

e eccentricity, N.D.

E energy per unit mass, mz/sec2

f unit thrust direction, N.D.

F functional defined by equation (3)
kg/sec

g intermediate boundary equation

& gravity acceleration, m/sec2

Gl’ Gy components of oblate gravity accelera-
tion, m/sec

cr spherical earth 11, tant, mo/sec®

- pherical earth gravity constant, m”/sec

h angular momentum per unit mass, mz/sec

J functional to be minimized, kg

m mass, kg

N total number of stages, N.D.

P semi-latus rectum, m

r radlus, m

rp perigee radius, m

S varilational switching function, N.D.

t time, sec

T thrust, N

v velocity, m/sec

x state variable

unit vector pointing at north pole, N.D.

[0

B mass flow rate, kg/sec

€ Jump factor

n . Lagrange multiplier, kg/sec
A ' " Lagrange multiplier, kg-sec/m
H Lagrange multiplier, kg/m

a Lagraﬁge multiplier, N.D.

¥ pitch attitude, keg.

¢ yaw attitude, deg.
Superséripts

v time derivative

- vector |

unit vector

f final

o initial
Subscripts

i,3,k,

L,m,n stage numbers
f final

o initial

a desired

pk perking orbit
Opersators

- dot product
x cross product
a( ) differential
?; () gradient with respect to X
o )

partial derivative

Appendix B
Derivation of Optimum Control

As mentioned in the Analysis Section, the
optimization of a trajectory to a circular synchro-
nous equatorial orbit may be considered as the pro-
blem of optimizing a multi-stage launch vehicle to
g particular final orbit. The optimization problem
to be considered here begins at booster Jettison,
which i1s assumed to be a fixed position and velo-
city. The sustalner portion of the Atlas continues
until propellant depletion. The sustainer is jet-
tisoned and a few seconds later the first Centaur
burn begins. Its duration is variable and must be
optimized. The perigee radius of the parking orbit
is fixed. The duration of the parking orbit
may or may not be optimized. The parking orbit is
not & true coast since a small acceleration is



maintained for propellant retention. The duration
of the second Centaur burn must be optimized, fol-
lowed by an optimum transfer orbit coast (a true
coast), and a final burn of fixed total impulse.
The analysis presented in this appendix to solve
this problem is a special case of the analysis
derived in Ref. 3, with an additional constraint -
parking orbit perigee radius.

The varistional problem to be solved is to
find the steering program and various stage dura-
tions which maximize the payload caepebility of a
multi-stage launch vehicle to a specified final
orbit. The trajectory must satisfy certain ini-
tial, final, and intermediate conditions on the
state variables. The thrust, propellant flow rate,
and Jettison weight for each stage are assumed to
be constant. The equations of motion and con-
straints for each stage may be written as

T

F-T(@ -2 £=0 " (18)
T-v=0 (1b)
ﬁ1+51=o (1c)
FrfF-1=0 (14)

where f is the unit thrust direction ?_nsi G (T) 1s
the oblate'earth gravity acceleration 6 y
which may also be written

—-— -— A A -— A

&(r) = Gl(r, rcoz)r+ Gylr, T z)z  (2)
(A1l symbols are defined in appendix A.) Suppose
that each stage of the vehicle 1s numbered con-
secutively starting with the booster. For analy-
sis purposes a stage change occurs when the thrust
and/or propellant flow rate changes and/or a mass
is jettisoned. A Bolz?7§ormulation of the varia-

tional problem is used , and the functional to
be minimized is written as in Ref. 3 as

Fy dt (3)
where the functional Fi for each stage 1is
Fi=A-lvV - G- f|+tnu- ? -V

+olm + By) + n(%  F - 1) (4)

The resulting Fuler-Lagrange equations are

N+p=0 (58)

S S _ o

WG T+ (K1) TGy - 6 (A r)y
+(i'z)€;cz='6 (5b)

. Ti_ ~

o-l_nz.x £f=0 (5¢)
~ Ti_ —

anf - Z=A=0 (5d)

A
The optimum thrust directiom f is obtained by com-
bining equations (1d) and (5@) and using the
Welerstrass E-test. This procedure results in

=X (6)

Integrals of the Motion

‘Since F does not explicitly depend on time,
an integral of the motion is

- - - —_ Ti

C+XN-G+u- v+ A-oft =0 (7)
When & sgherical gravity model is assumed (1.e.,
G{r) = G/r3 T), three additional integrals of
the motion exist which are given by

XX ¥ + u X = constant

Since T, E, ;, and v are all continuous except
where an lntermediate boundary condition 1s im-
posed (as will be shown later), the three integrals
are constant across staging polnts where continuity
holds. However, for the oblate gravity model used
in this analysis, only a single component of the
above vector integral 1s constant, as can be ]
verified by differentiation with respect to time.

(XXV+aXT) + 2z = constant (8)

Transversality Equation

The transversality equation for thils problem
is :

N _ - - ty
ajg = Z%(Cdt+7\'dv+u'dr+gd.xn)t.l
i= i-

- am, (9)

which is set equal to zerc for an optimal solution.
Reference 3 shows that: 1) A and u are continuous
everywhere 1f there are no intermediate boundary
conditions. If the intermediate boundary condition
(assumed to occur at a staging point) 1s expressed
as

&(F,7) =0 (10)

reference 8 shows that the discontinuities in A
and p are €Vgg and €Vig, respectively. The vari-
able € is used as an initial condition in the two
point boundary value problem to satisfy the inter-
mediate boundary condition (eq. (10)). 2) The
equations that must be satisfied to optimize the
duration of the powered and coast stages. are de-
rived in Ref. 3. The applicable results are pre-
sented here. Let J be the first optimized powered
stage. Then for constant jettison weight the equa-
tion for optimizing stage £ is

1-1 £ o
;Z% (sy - Si+1) = 0 (11)

vhere o and f refer to initial and final values
and the S functions are defined as

- = = - Ti
c ATG+rp - vVvEFA
Si=B—i-q=' Bi )Bl¥o

(128)




8,20, B, =0 (12b)
where the right side of equation (12a) is obtained
by using equation (7). For coasting stages
(By =Ty = 0) to be optimized, the equation

Ci=(R*G+up-v)=0 (13)

must be satisfied for masximum payload.

" 3) For free initial or final state variable x,
the required or final condition for maximum pay-
load (Ref. 4) is

X (14)

A
[]
(o]

oh

2

Tnitlal Conditions

If the initial position and velocity are
spacified, the initial values of any five of the
six A and u may be used as variable initial
conditions in order to satisfy the required final
conditions of the two point boundary value pro=
blem. In order to eliminate the difflculty asso-
ciated with guessing_at values of the multipliers,
the values of A and u can be expressed in terms of
pitch and yaw attitude (¥ and @) and rates (¥
and ¢). These equations may be found in Ref. 4,
appendix C. The values of A and p are then cal-
culated from:

— ~

A= N

(15a)

D= =M - (15b)
The value of A can be set egual to unity without
loss of generality. The initial value of A can
be calculated in closed form, as will be shown

by the following development.

Final Conditions

Final conditions for both the conventional
and unconventional synchronous equatorial orbit
mission require a circular orbit at synchronous
orbit altitude with prescribed inclination. If
the required inclination is non-zero, both the
longitude of the ascending node and the injection
point in the final orbit are free for optimiza~-
tion. As shown in Ref. 4, the corresponding
auxiliary variational final conditions are

(R xT+p x7) *2=0 (16a)

and

(N xv+upzx7) * (rxv)=0 (16b)
If the desired inclination 1s zero, equations
(16a) and (16b) degenerate into ome equation
(zero inclinatiopn is equivalenf to two final
conditions, r * z = O and v = z = 0), and only
equation (16a) must be satisfied.

Since equation (16a) is a constant of the
motion (eq. 8), it may be satisfled at the be-
glnning of the trajectory, and used to calculate
A . However, 1t must first be verified that jump
discontinuities in A and p at intermediate boun-
daxry points do not change the value of the con=-
stant. This requires that

(%gx;+§;gx;)';=0 (17)

Tt will be shown later that equation (17) is
satisfied for all functions g used herein.

The calculation of A proceeds as follows:

(Rx¥+ux? 2= (Nx¥) -2

1}
o

~(AxT) *z- (MxT) - z

~ — A —
A = AMAXVY -AXT) " 32
~ —_— A
(Axr) 2z
Computing » with equation (18) guarantees that
equation (16a) will be satisfied.

(18)

Intermediate Conditions

As explained earlier, it 1s necessary to
constrain the perigee radius at injection into
the first parking orbit. Otherwise, the optimum
solution would result in the parking orbit injec-
tion and/or the equator crossing occurring at very
low altitudes, thus violating spacecraft heating

constraints. Therefore, the intermediate con-
straint is
g(r, v) =tp - 15 q=0 (19)

where the desired value corresponds to the perlgee
altitude. By using equations found in Ref. 9,
equation (19) can be written as

P . =0 '
T+e 'pd (20)
where
h+h
p=— (semi-latus rectum) (21a)
m
2P
e = 1+ g (eccentricity) (21b)
g‘*

=Y - -
E ——Z'I - (energy per unit mass) (2lc)
% =T x v (angular momentum per unit (21a)

mass
The reduired gradients are calculated to be
~ — 2_

_ hhxr -r°v) ~
e =

8 P ~ (22a)

DT xh) -7 2

- el r
Ve g = = (22b)

Tt is easily shown that equation (17) is satisfied
for the gradients in equation (22a) and (22b).

In fact, equation (17l is_satisfied for any
function g of r, v, hand r * v. For such a
function g,

- d3g ~ - -
CPRE SRY L TRRE



and

+—-—a-§—.-)—;:x;=(—) (24)

iiznce the value of Iy X v o+ E x T 1s unaffected
by the Jjump in X and p resulting from a functilon
g as defined above.

Boundary Value Problem

For the ATS-E mission, both fixed and
optimm parking orbit coast times were considered.
The transfer orbit coast time was elways opti-
mized, however, along with the durations of the
first and second Centaur burns. Based on the
preceding discussion of the transversality equa=-
tion, the initial and final conditions for the
two point boundary value problem are as follows
for the case where the parking orbit coast time
was optimized:.

Initisl Conditions Final Conditions
¥ Eg
Voo Ty
? Ty
P o4 (Parking orbit)
€ (r'z) =0
tj (First Centaur Burn) (;'2) =0
k-1 f o
ty (Parking Orbit Coast) 123 (si-si+l) =0
ﬁ& (Second Centaur Burn) 2: (S 1+l =0
tp (Transfer Orbit Coast) (R " G+p v =0
(25)

If the desired final inclination is non-zero,
then (r z) and (v Z) = 0 are replaced by i, and
(Wxr+rxv) * (rx¥) =0. If the parﬁing
orbit coast time 1s fixed, then an initiasl and
final conditlon are removed. These are tk'and

i‘:—% (8y-83) = ©

It should be recognized that there may be any
number of fixed stages between t, and ty, etc.
Also, the last three final conditions are evaluated
at intermediate points in the trajectory.

Appendix C
Two Point Boundary Value Problem

The following technique was devised to syste-
metically proceed from & simple, easily converged
problem to the solution of the two point boundary
value problem for a circular synchronous equatorial
orbit.

A trajectory 1s obtained to a slightly ellip-
tical (parking) orbit with the desired perigee
radius without plane change with a 90° lsunch azi-
muth. This problem converges easily. Then the
ascent burn time is fixed at the value obtained
and a variable length parking orbit coast, a fixed
parking orbit perigee radius and a second burn are
added. This problem is targeted to the desired
apogee and 180° argument of perigee for first
equator crossing second burn. An inclination de-
crease of about two degrees is then added to these
final conditions and the problem is retargeted to
the augmented finel conditions. Now the transfer
orbit coast (variasble) and apogee burn (fixed or
variable) are added. This trajectory is integrated
to the end with the converged Initial guesses from
the last step. The final conditions achieved will
frequently be far from a circular synchronous equa-
torial orbit. However, specify the final condi-
tions actually achieved as the desired ones, and
optimize the problem. The parking orbit coast,
second burn, and transfer orbit coast durations
will change. Now alter the achieved final condi-
tions toward the desired ones Jjudiciously in steps,
retargeting at each step. 1In this manner, the
desired final orbit conditions may be obtained.

Now the ascent burn duration may be optimized.
Any sizable change in a constraint or final condi-
tion is best achieved by proceeding in steps. The

. problem is quite nonlinear. Attempts to plot

initial conditions as functions of the final condi-
tions for extrapolation purposes were made. They
were generally unsuccessful.
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Figure 2. - Circular synchronous equatorial orbit ascent profile.
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Figure 3. - Separated spacecraft mass as a function of
launch azimuth,
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Figure 4, - Separated spacecraft mass as a function of

final inclination.
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Figure 5, - Transfer orbit inclination as a function of
final inclination.
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Figure 6. - Inertial velocity at apogee motor ignition as a
function of final inclination.
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Figure 7. - Latitude at second main engine start as a

function of final inclination.
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Figure 8. - Longitude at second main engine start as a

function of final inclination.
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Figure 9. - True anomaly at second main engine cut-off
as a function of final inclination.
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Figure 10. - Parking orbit coast time as a function of
final inclination,
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Figure 11. - Altitude at second main engine start as a
function of final inclination,
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Figure 12. - Parking orbit apogee aititude as a function
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Figure 13. - Percentage of Centaur propellant burned
during first burn as a function of final inclination.
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Figure 14, - Final longitude as a function of final
inclination.
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